
ABINIT School 2019
January 21 – 25, 2019
Bruyères-le-Châtel, France

Installing ABINIT on a Supercomputer – Hands-on session

By following this step-by-step procedure, you should understand how to
install ABINIT on a supercomputer using the module command.

In the following, all the commands are those of the CEA Cobalt

supercomputer (TGCC French computing center, 2019).

Open a terminal.
First of all, clean your environment (unload all “modules”) by typing:

module purge

It is mandatory to have a Fortran compiler and a MPI library. Load the
corresponding modules (Intel compiler suite and MPI):

module load intel mpi

A linear algebra library (blas /lapack) is also needed for ABINIT. On a

supercomputer, it is mandatory to have optimized library. It is also mandatory

to use a multithreaded library (taking advantage of a multi-task parallelism). It

is also better to have a parallel library (based on Scalapack).

On the Cobalt supercomputer, the following modules should be loaded:

module load feature/mkl/multi-threaded
module load scalapack

In the directory dedicated to this tutorial, you should find the abinit-
x.y.z.tar.gz file. If not, download this file from ABINIT website

(www.abinit.org) and then extract it.

Enter in the abinit-x.y.z directory.

It is highly recommended to create a separate directory to compile the code
and store the object files. Let’s create the build directory by typing:

mkdir build

Enter in the build directory.

Let’s first try to configure the build automatically.
Just type (in the abinit-x.y.z/build folder):

../configure

After a few seconds, you should obtain the configuration report.

What do we see in it (usual case)?

* OpenMP enabled : no
* MPI enabled : no
* TRIO flavor = none
* DFT flavor = none

The parallel build (MPI and openMP) is not activated; no plugin has been
activated (no “Transferable I/O” (TRIO) plugin, no DFT plugin).
This is not optimal! Let’s change this.

First of all, we will create a configuration file; this is more convenient than

having a long command line to configure the code.

Type the command (in the terminal):

hostname

You should get the name of the computer.
Something like: computername or computername.domain.domain
Let’s create a file named computername.ac in the build directory. Use your

favorite editor for that.

Then, in this configuration file, add the following lines, and retry ../configure:

enable_mpi=”yes”
enable_openmp=”yes”

If the configuration script goes to the end, MPI has been detected.

If not, the best practice, on a supercomputer, is to use a parallel compiler. For

that, add the following lines in the configuration file:

FC="mpif90”
CC="mpicc"
CXX="mpicxx"

If not, you should add a line locating the MPI installation.

Note: another possibility is is to locate the mpif90 file.

Type: which mpif90 . You should find it in a place like:
path_to_MPI/bin/mpif90
Then add the following line in the configure to use directly mpif90 as
Fortran compiler. For that, add the following lines in the configuration

file: with_mpi_prefix=”path_to_MPI”

This time, everything should be OK; MPI has been detected.

Unfortunately, the linear algebra library detection is not optimal. The

configure script must be helped a little. Add the following lines it. The first

one tells the script to select the Intel Math Kernel Library (MKL) we have

previously loaded. The second one uses a specific variable to locate the

library (specific to Cobalt computer):

with_linalg_flavor="mkl+scalapack"
with_linalg_libs=${SCALAPACK_LDFLAGS}

Now, let’s try to add the ABINIT plugins.

For this tutorial, let’s first try to add netCDF (“Transferable I/O”=TRIO

plugin). Add the following in the configuration file and re-run the configure
script:

with_trio_flavor=”netcdf”

If the configuration script goes to the end, you should see the following in the
configuration report:

 * TRIO flavor = netcdf

If not, you just have to load the netcdf module:

module load netcdf-fortran

and help the configure script to locate the library (yes!, these lines are not

so simple to guess). Add the following in the configuration file:

with_netcdf_libs="-L${NETCDFC_ROOT}/lib -lnetcdf \
 -L${NETCDFFORTRAN_ROOT}/lib -lnet cdff"
with_netcdf_incs="-I${NETCDFC_ROOT}/include \
 -I${NETCDFFORTRAN_ROOT}/include"

At this stage, the detection of netCDF should be OK.

Let’s now add one additional plugin: libXC (library of exchange-correlation

functionals).

First load the libXC module:

module load libxc

Then help the configure script to locate the library (add the following lines

in the configuration file):

with_dft_flavor=”libxc”
with_libxc_libs="-L${LIBXC_ROOT}/lib -lxc -lxcf90"
with_libxc_incs="-I${LIBXC_ROOT}/include"

In the final configuration report, you should see this:

* DFT flavor = libxc

Everything is almost ready for the compilation

Just type:

make mj4

...and wait... wait..

At the end of the compilation process, you should get some messages

explaining how to check the installation by running the automatic tests.

Let’s try if ABINIT can run; just type:

cd tests && ../../tests/runtests.py fast

And wait for the report.
Many other automatic tests are available. You can get the list with:

../../tests/runtests.py –show-info

ABINIT executable is located in a specific directory. You can it here:

abinit-x.y.z/build/src/98_main/abinit

OK, this is done.

You have compiled ABINIT, congratulation!

To go further...

Improving FFT implementation

On the same model as Linear Algebra, you can take advantage of an optimized

Fast Fourier Transform (FFT) library.

The FFTW library (included in the Intel Math Kernel Library) can be loaded as
follows:

module load fftw3/mkl

Then add the following lines in the configuration file (to help ABINIT to locate
the library):

with_fft_flavor="fftw3"
with_fft_incs="-I${MKL_INCDIR}"
with_fft_libs=${MKL_LDFLAGS}with_netcdf_libs="-

A possible configuration file (Cobalt supercomputer)

FC="mpif90"
CC="mpicc"
CXX="mpicxx"

enable_mpi="yes"
enable_openmp="yes"

with_linalg_flavor="mkl+scalapack"
with_linalg_libs=${SCALAPACK_LDFLAGS}

with_fft_flavor="fftw3"
with_fft_incs="-I${MKL_INCDIR}"
with_fft_libs=${MKL_LDFLAGS}

with_trio_flavor="netcdf"
with_dft_flavor="libxc"

with_libxc_libs="-L${LIBXC_ROOT}/lib -lxc -lxcf90"
with_libxc_incs="-I${LIBXC_ROOT}/include"

with_netcdf_libs="-L${NETCDFC_ROOT}/lib -lnetcdf \
 -L${NETCDFFORTRAN_ROOT}/lib -lnet cdff"
with_netcdf_incs="-I${NETCDFC_ROOT}/include \
 -I${NETCDFFORTRAN_ROOT}/include"

To compile, the following modules have to be loaded:

module load feature/mkl/multi-threaded
module load intel mpi
module load scalapack fftw3/mkl
module load netcdf-fortran libxc

