Strong electronic correlations in solid states physics: how to handle it with ABINIT?

Presentation of cRPA, DFT+U and DFT+DMFT

Bernard Amadon
CEA/DAM, DIF, France

ABINIT School 2017
1. Introduction to strong correlation
Electronic structure: Bloch states $= u_k(r)e^{ikr}$
Localization of $3d$, $4f$ and $5f$ orbitals.

$3d$ and $4f$ orbitals are more localized.
Localized orbitals ⇒ two consequences:

- overlap is weak: energy bands are narrow (width: \(W \)).
- Strong interactions "\(U \)" between electrons inside these orbitals.

⇒ The ratio of \(U \) and \(W \), governs the importance of correlations.
4d element: filling of the 4d band (Bonding states and antibonding): 4d electrons are delocalized.

Lanthanides: 4f electrons are localized, negligible overlap between 4f orbitals.

Actinide: intermediate case of localization.

At atmospheric pressure:

![Graph showing band occupancy ratio and volume as functions of band occupancy ratio.](image-url)

Isostructural transition $\frac{V_\gamma - V_\alpha}{V_\gamma} = 15\%$, ends at a critical point

Electronic configuration $4f^1$.
- α phase: Pauli paramagnetism
 \Rightarrow α phase: $f\,e^-$ more delocalized.
- γ phase: Curie Paramagnetism
 \Rightarrow γ phase: $f\,e^-$ is localized

[Johansson, B. Phil. Mag. 30, 469 (1974)]
Isostructural transition $\frac{V_\gamma - V_\alpha}{V_\gamma} = 15\%$, ends at a critical point

Electronic configuration $4f^1$.

- **α phase**: Pauli paramagnetism
 - \Rightarrow **α phase**: $f\,e^-$ more delocalized.

- **γ phase**: Curie Paramagnetism
 - \Rightarrow **γ phase**: $f\,e^-$ is localized

[Johansson, B. Phil. Mag. 30, 469 (1974)]

Only the α phase is described by DFT/LDA/GGA.
Peak at the Fermi level only in the α phase.

- γ and α phase: high energy bands (-2 eV and 5 eV).
- Bands at high energy not described in LDA.
- Peak at the Fermi level not correct in LDA.
- $E_{\text{dft-lda}}(V)$: γ phase not stable.
Non magnetic GGA underestimates volume for late actinides

GGA: Cohesion is overestimated, not enough correlation
GGA-AFM: good description of volumes but magnetism is wrong

Photoemission spectra of d elements.

From Morikawa et al (1995)

Sekiyama 1992

⇒ YTiO$_3$ insulator: metal in LDA.

⇒ SrVO$_3$ is a metal: metal in LDA, but without the peak at -1.8eV.
Oversimplified... 4d and 5d elements exhibit non negligible strong correlation effects.
Towards more explicit local correlation

The exact hamiltonian is:

\[H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla^2_{r_i} + V_{\text{ext}}(r_i) \right] + \frac{1}{2} \sum_{i \neq j} \frac{1}{|r_i - r_j|} \]

It can be exactly rewritten in second quantization as:

\[H = \sum_{i,j} \langle i|h|j \rangle c_i^\dagger c_j + \sum_{i,j,k,l} \langle ij|v|kl \rangle c_i^\dagger c_j^\dagger c_k c_l \] (1)

If interactions are purely local (and with only one (correlated) orbital per atom), one can write the Hubbard model

\[H = \sum_{R,R'} t_{R,R'} c_R^\dagger c_{R'} + \sum_{R} U \hat{n}_{R\uparrow} \hat{n}_{R\downarrow} \]

one electron term : delocalization interaction term : localization

Competition between delocalization and localization
The Hubbard model: Competition between localization and delocalization

\[H = \sum_{R,R'} t_{R,R'} c_R^\dagger c_{R'} + \sum_R U \hat{n}_{R\uparrow} \hat{n}_{R\downarrow} \]

- **One electron term**: delocalization
- **Interaction term**: localization

- For large value of the interaction \(U\), electrons are localized
- For low value of the interaction \(U\), electrons are delocalized
2. The DFT+\(U\) method
Hamiltonian to solve (i represents an electron)

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla^2 r_i + V_{\text{ext}}(r_i) \right] + \frac{1}{2} \sum_{i \neq j} \frac{1}{|r_i - r_j|}$$

DFT solution

$$\frac{1}{2} \sum_{i \neq j} \frac{1}{|r_i - r_j|} \Rightarrow \sum_i V_{\text{Ha+xc}}(r_i)$$

Better: Keep local interaction between correlated localized orbitals.

$$\frac{1}{2} \sum_{i \neq j} \frac{1}{|r_i - r_j|} \Rightarrow \frac{1}{2} \sum_{i \neq j} U_{ij} \hat{n}_i \hat{n}_j$$
Explicit description of correlations

- We need to solve:

\[H = \sum_{R,R'} \sum_{i,j} t_{ij}^{R,R'} c_{R_i}^{\dagger} c_{R'_j} + \frac{1}{2} \sum_{R,f \neq f'} U_{ff'} \hat{n}_{R_f} \hat{n}_{R_{f'}} \]

one electron term (lda)
many body term: interactions

- **Static mean field approximation**: \(\langle AB \rangle = \langle A \rangle \langle B \rangle \)
- Fluctuations \(\langle (A - \langle A \rangle)(B - \langle B \rangle) \rangle \) are neglected
- The energy thus writes:

\[
\frac{1}{2} \langle \sum_{f,f'} \hat{n}_f \hat{n}_{f'} \rangle = \frac{1}{2} \sum_{f,f'} n_f n_{f'}
\]

with \(n_f = \langle \hat{n}_f \rangle \)

Anisimov, Zaanen, and Andersen, PRB 44 943 (1991)
Strong local correlations: Introduction

- Hamiltonian to solve (i: électrons):

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla^2 r_i + V_{\text{ext}}(r_i) \right] + \frac{1}{2} \sum_{i\neq j} \frac{1}{|r_i - r_j|}$$

- Strong correlation in Localized orbitals (f, d)

- Other orbitals: DFT(LDA/GGA) could be tried.

$$H_{\text{LDA+Manybody}} = \text{one electron term (DFT/LDA)} + \frac{U}{2} \sum_{i\neq j} \hat{n}_i \hat{n}_j$$

$$E_{\text{LDA+U}} = E_{\text{LDA}} - U \frac{N(N-1)}{2} + \frac{U}{2} \sum_{i\neq j} n_i n_j$$
The LDA+U Method

Replace operators by their mean value (static approximation)

\[
E = E_{\text{one body term}} + U \sum_{\mathbf{R}} U n_{\mathbf{R}\uparrow} n_{\mathbf{R}\downarrow}
\]

In a DFT context:

\[
E = E_{\text{LDA}} - U \frac{N(N-1)}{2} + \frac{U}{2} \sum_{f \neq f'} n_f n_{f'} \quad \Rightarrow \quad V = V_{\text{LDA}} - U(n_f - \frac{1}{2})
\]

- \(n_f = 0 \), \(V = V_{\text{LDA}} + \frac{U}{2} \)
- \(n_f = 1 \), \(V = V_{\text{LDA}} - \frac{U}{2} \)

⇒ A gap is opened among correlated orbitals.

⇒ Oxides: U/crystal field ⇒ Mott-Hubbard/Charge-transfer insulator.

⇒ \(U \) is, in the atomic limit the energy which is necessary to promote one electron from a correlated orbital to another.

\[U = E(N+1) + E(N-1) - 2E(N) = I - A. \]
The LDA+U method

Atom (integer nb of e^{-}) = The LDA+U correction disappears.

\Rightarrow Self-interaction correction.

\Rightarrow Discontinuity of the exchange and correlation potential.

From Cococcioni et al PRB 71 (2005)

see also Solovyev et al PRB 50 16861 (1994)
What is not yet defined: orbital and interaction

\[\frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \Rightarrow \frac{1}{2} \sum_{i \neq j} U_{ij} \hat{n}_i \hat{n}_j \]

- The localized \(f \) orbital: What is its radial part? ⇒ important but not discussed here.
- What is the value of effective Coulomb interaction \(U \) between these \(f \) orbitals?
The PAW method: Expression of a Kohn Sham function of Cl$_2$.

\[|\Psi_{k\nu}\rangle = \frac{1}{\sqrt{N}} \sum_i \langle \tilde{\phi}_i | \tilde{p}_i | \tilde{\Psi}_{k\nu}\rangle - \frac{1}{\sqrt{N}} \sum_i \langle \tilde{\phi}_i | \tilde{p}_i | \tilde{\Psi}_{k\nu}\rangle \]

On plane waves

On a local radial grid

Blöchl PRB 1994

[Developed in ABINIT by the CEA group]

A grid devoted to local properties: well adapted to correlated systems and to compute:

- DFT+\(U\) density matrix.
- Projected Wannier orbitals.
A Kohn-Sham function can be written:

\[|\Psi_{k\nu}\rangle = \left|\tilde{\Psi}_{k\nu}\right\rangle + \sum_i \left| \varphi_i \right\rangle \langle \tilde{p}_i | \tilde{\Psi}_{k\nu}\rangle - \sum_i \left| \tilde{\varphi}_i \right\rangle \langle \tilde{p}_i | \tilde{\Psi}_{k\nu}\rangle \]

On plane waves

On a local radial grid

- \(\varphi_i \): atomic wavefunction
- \(\tilde{\varphi}_i \): pseudo atomic wavefunction
Double counting corrections: Atomic limit (or Full localized limit) [Lichtenstein(1995), Anisimov (1991)]:

\[
E_{\text{dc}}^{\text{FLL}} = \sum_{t} \left(\frac{U}{2} N(N - 1) - \sum_{\sigma} \frac{J}{2} N^{\sigma}(N^{\sigma} - 1) \right)
\]

Around mean field version [Czyzyk(1994)] (delocalized limit):

\[
E_{\text{dc}}^{\text{AMF}} = \sum_{t} \left(U N_{\uparrow} N_{\downarrow} + \frac{1}{2} \left(N_{\uparrow}^2 + N_{\downarrow}^2 \right) \frac{2l}{2l + 1} (U - J) \right)
\]

(Made to correct the delocalized limit.)
Mott insulators: Gap excitations are d-d (or f-f) ie between Hubbard bands.
Charge Transfert insulators: Gap excitations are Op-d (Or Op-f)
Main effects of Mean Field approximation (DFT+U)

FeO (d^6): insulator in LDA+U

Cococcioni et al PRB 71 2005

UO_2 (f^2): antiferromagnetic, insulator

\(\text{Gap}_{\text{exp}} = 2.1 \text{ eV} \)

Electrons localization: volume increases in LDA+U

Dudarev et al Micron 31 2000

— ABINIT School 2017 —
Spectral functions: basic features are reproduced.

Structural data

\Rightarrow Electron repulsion induces a weakening of the bonding.

But: The α phase is not correctly described, magnetism is incorrect (except for the β phase), no transitions.
We start from the Hartree Fock result

\[E_{HF} = \sum_{a,occ} h_{a,a} + \frac{1}{2} \sum_{a,b} (aa, bb) - (ab, ba) \]

The interaction part corresponds to, taking into account the spin:

\[
E_{HF}^{\text{interaction}} = \frac{1}{2} \sum_{a,b} \sum_{\sigma,\sigma'} \left[\int \Psi_{\sigma}^a(r) \Psi_{\sigma'}^b(r') \frac{1}{|r - r'|} \Psi_{\sigma}^a(r) \Psi_{\sigma'}^b(r') \right. \\
- \left. \delta_{\sigma,\sigma'} \int \Psi_{\sigma}^a(r) \Psi_{\sigma}^b(r') \frac{1}{|r - r'|} \Psi_{\sigma}^a(r) \Psi_{\sigma}^b(r') \right]
\]

or

\[
E_{HF}^{\text{interaction}} = \frac{1}{2} \sum_{a,b} \sum_{\sigma,\sigma'} \left[\langle a^\sigma b^\sigma' | V | a^\sigma b^\sigma' \rangle - \delta_{\sigma,\sigma'} \langle a^\sigma b^\sigma | V | b^\sigma a^\sigma \rangle \right]
\]

Then, we keep only the terms in \(|a\rangle\) in the correlated subsets of orbitals.
\[|a\rangle = \sum_{m, L=\text{Lcor}} \langle m|a|m \rangle + \ldots \text{terms neglected} \]

and show that (blackboard or exercise):

\[
E_{\text{interaction LDA+U}} = \frac{1}{2} \sum_{m_1, m_2, m_3, m_4} \sum_{\sigma, \sigma'} \left[\langle m_1 m_2|V|m_3 m_4 \rangle n_{m_4, m_2}^{\sigma'} n_{m_3, m_1}^{\sigma} - \delta_{\sigma, \sigma'} \langle m_1 m_2|V|m_3 m_4 \rangle n_{m_3, m_2}^{\sigma} n_{m_4, m_1}^{\sigma} \right]
\]

it can be rewritten as:

\[
E_{\text{interaction LDA+U}} = \frac{1}{2} \sum_{1, 2, 3, 4, \sigma} \left[\langle 12|V|34 \rangle n_{4, 2}^{\sigma} n_{3, 1}^{\sigma} + (\langle 12|V|34 \rangle - \langle 12|V|43 \rangle) n_{4, 2}^{\sigma} n_{3, 1}^{\sigma} \right]
\]

with

\[
n_{m_1, m_2}^{\sigma} = \sum_a \langle m_1|a \rangle f_a \langle a|m_2 \rangle = \sum_{\nu, k} \langle m_1|\Psi_{\nu, k} \rangle f_{\nu, k} \langle \Psi_{\nu, k}|m_2 \rangle
\]
Calculation of $\langle m_1 m_3 | V | m_2 m_4 \rangle$

One uses $\frac{1}{r_{12}} = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} \frac{4\pi}{2k+1} \frac{r^k}{r_{12}^{k+1}} Y^m(\theta_1, \phi_1) Y^m_*(\theta_2, \phi_2)$ and after some manipulations: $\langle m_1 m_3 | V_{ee} | m_2 m_4 \rangle$ contains an angular and a radial part.

$$\langle m_1 m_3 | V_{ee} | m_2 m_4 \rangle = 4\pi \sum_{k=0,2,4,6} \frac{F_k}{2k+1} \sum_{m=-k}^{+k} \langle m_1 | m | m_2 \rangle \langle m_3 | m | m_4 \rangle$$

$$U = \frac{1}{(2l + 1)^2} \sum_{m_1, m_2} \langle m_1 m_2 | V_{ee} | m_1 m_2 \rangle = F_0 \text{ coulomb term}$$

$$J = \frac{1}{2l(2l+1)} \sum_{m_1 \neq m_2} \langle m_1 m_2 | V_{ee} | m_2 m_1 \rangle = \frac{F_2 + F_4}{14} \text{ exchange term}$$
== LDA+U

usepawu 1 # activate DFT+U
lpawu 2 -1 # apply DFT+U for d orbitals for the first species only
upawu 8.0 0.0 # Value of U
jpawu 1.0 0.0 # Value of J

usedmatpu 10 # Number of steps to impose a density matrix
dmatpawu

1.0 0.0 0.0 0.0 0.0 # up density matrix
0.0 1.0 0.0 0.0 0.0 # up density matrix
0.0 0.0 1.0 0.0 0.0 # up density matrix
0.0 0.0 0.0 1.0 0.0 # up density matrix
0.0 0.0 0.0 0.0 1.0 # up density matrix

1.0 0.0 0.0 0.0 0.0 # dn density matrix
da 0.0 1.0 0.0 0.0 0.0 # dn density matrix
0.0 0.0 0.0 0.0 0.0 # dn density matrix
0.0 0.0 0.0 1.0 0.0 # dn density matrix
0.0 0.0 0.0 0.0 1.0 # dn density matrix
0.0 0.0 0.0 0.0 0.0 # dn density matrix
On the board...